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50% Renewables, No Coal and 20% Gas
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Emissions 93g/kWh

Demand 36.8 GW

Coal 0.0 GW (0%)

Gas 7.5 GW (20%)

Solar 7.0 GW (19%)

Wind 9.4 GW (25%)
Hydro 0.2 GW (0.4%)

Imports 3.3 GW (9%)
Biomass 2.0 GW (5%)
Nuclear 8.2 GW (22%)
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London Challenges for 100% Renewables
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* We need to reduce the cost of energy from renewable sources and
reduce the cost of integrating those sources

» We need to grow the supply to meet rising demand in newly electrified
sectors of transport and building heating/cooling

* We need to maintain long-term security of supply and short-term
stability despite variability of wind and solar energy

* We need to find new sources of control functions previously supplied
by fast-acting fossil-fueled generation
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London Solutions for 100% Renewables
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The key is “flexibility”: being able to adjust energy consumption
and/or production to respond quickly to changes elsewhere

Flexible Energy
Generation Storage

Optimisation
and Control

International Demand
Connection Response
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London Interconnections for

International Diversification of Energy
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Global Energy Interconnection
Development and Cooperation Organization
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London Challenges in Controlling

Energy Systems
BB 2R ey T kA

* Harnessing demand-side control actions requires a much more
fine-grained and nuanced understanding of human behaviour and
the link between consumption of services and energy

* Energy systems are becoming more inter-dependent and complex,
and therefore more challenging to optimise and control

« Expectations continue to rise on the control people have over their
working and home environments in terms of comfort,
responsiveness and dependability
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Imperial College Data-Driven Energy Systems

e for Exploiting Flexibility
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Whole-System Planning Energy Market Real-Time Operation

(years) (hours/minutes) (seconds)

”

* Multi-Space-Time Modelling

* Consumer Characterization * Security Assessment
* Scenario Reduction

+ Pricing & Bidding Policy * Decentralized Control

Data-Driven Analysis and Optimization

* Reinforcement Learning:
| Policy Iteration, Q Learning
I—__ L S (- Unsupervised Learning:
“l“III"I“I"III"“ ;—_ E ; " Auto Encc:der, C-Vine Clustering
. E== : * Decentralized Control:
Multi-Agent System, Block Chain
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Smart Meter Data Historical Data Digital Simulation
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A strategy
for a Modern
Digitalised

A Strategy for a Modern

Digitalised Energy System
BACEC A VR R ) SRS
Report of the UK’s Energy Data Task Force
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Open markets

Operational optimisation

Infrastructure and assets visibility

Data visibility
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Five Areas of Data Exploitation
A BRI Sk

+ Agile Regulation (##£i5%) : Enabling regulators to adopt a much more agile and risk reflective
approach to regulation of the sector, by giving them access to more and better data.

- Open Markets: Achieving much better price discovery, through unlocking new markets, informed by
time, location and service value data.

- Data Visibility: Understanding the data that exists, the data that is missing, which datasets are
Important, and making it easier to access and understand data.

- Operational Optimisation: Enabling operational data to be layered across the assets to support
system optimisation and facilitating multiple actors to participate at all levels across the system.

« Infrastructure and Asset Visibility: Revealing system assets and infrastructure, where they are
located and their capabilities, to inform system planning and management.
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London ABB'’s View of Digitalisation of Energy

Slide from lan Funnel, CEO ABB UK
ABBIIfETR BU A I By, . YEEABB CEO Ian Funnel

Mapping digitalisation to grid operations AL IR IR
Necessary architecture and key applications to harvest the benefits of digitalisation in the energy sector ‘al 4

Planning and design E Operations E& Maintenance m“fl Yield @ Interfaces
I I I
- Technical and economic |~ Data driven predictive | = Predictive outage | = Business KPis reporting | — Market interfaces
analysis for grid planning . operations | management ' | ,
) [ ) [ : -~ Business expansion = Services interfaces
Value - Usg of operational data for L - Autopilot functionalities | - Dla_gnostla based predictive |, planning | — Assetinterfaces (DERMS)
adding | - Operatecloserand beyond |~ Maintenance Business strategy support :
luti ~ Solutions to support the ' the current limits ' ~ Digitally connected : | 155 Nt pcn
solutions ; | . | :
connection codes ; | . -
| = Weather related | = Optimal crew and assets : .
: contingencies ' dispatching . :
[J_]] Analytics
-~ Grid analytics solutions to support migration to data driven operations
-~ Asset digital twins (health, stress and lifetime monitoring)
Digitised Digital generation Digital transmission Digital distribution Digital grid edge
igitise
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'L'Bﬁﬁ';',?,l Cokegs GE’s View of the Transformation to Autonomous Control

Slide from Vera Silva, CTO GE Grid Solutions
GEM [ ERih A 5, 11 : GEHLMME R J7CTO Vera Silva

NETWORK LEVEL OPTIMIZATION

LEVEL 04
AUTONOMOUS

Self-healing, self-provisioning
Automated Network
optimization and Wide Area
Control with reduced human
intervention.

Al driven app optimization
& orchestration from edge
to cloud to prevent &
minimize impact of
disturbances and outages.
Automated Advisory Mode

LEVEL 03
PRESCRIPTIVE

LEVEL 02
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THE INERTIA CHALLENGE - EFFECT OF SPARSE

CENTRES OF INERTIA  #:pkik: tapamgrboc s

Frequency change takes time to propagate ROCOF hits loss-of-mains limits in north & south
- Angles diverge > Stability risk
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Average system RoCoF within GB 0.125Hz/s limit, but threshold exceeded in both the north & south GB (not Midlands). Risk of regional DER tripping,
or in extreme case, loss of angle stability in network.



MEASURING THE EFFECTIVE AREA INERTIAWITH
PMUS @it pmuss v s A 20 5%

Average area frequency - Area RoCoF df/dt

Example shows section of Scotland data
» Area RoCoF for Scotland COI

 Net Boundary Power across the
Scotland boundary

These signals are used to compute
effective inertia using correlated changes.

Effective Area Inertia

estimation for
(e.g. 30-min windows, steps 1 min)




IMPLEMENTATION OF FAST FREQUENCY o
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Lessons learned

Wide area control is working well

» Fast acting (<0.5s) & reliable with fault-
tolerant distributed control.

+ Handles complex multi-event sequences.

* Frequency containment improved.

* Reduced islanding probability & impact
with sparse inertia

* More connection capacity: 107MW load

able to connect with WAC scheme

Landsnet plans to extend to more sites &

new use cases

Enables flexible fast frequency services

» Diverse loads & generators can contribute.
New service capability easily added.

« Cost effective — no new capital equipment
or dedicated batteries
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Demand Prediction: good at national level,

until something unusual happens
TR 18K 5% T Ak B S S

31800
End of broadcast
280 MW pick-up
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31400
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UK demand during Murray versus Djokovic Wimbledon Final

Source: National Grid Summer Outlook 2015
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Eoiei Demand at Household Level is

Even More Difficult to Predict
JoE RS 5 52 T 10 2 SR A AT

~ SRR
machine

» We need to predict at local level for

solving constraint problems in 25 Kettle | | Kettle |

urban networks I/ \ —— ,; i N
Microwave

» For this we also need to predict \
how readily demand might be . \ ; o —
'

kW demand (one minute)

delayed or displaced S

I = —

2
Lo M R

00:00 02:00 0400 06:00 0800 10:00 12:00 14:00 16:00 18:.00 20:00 22:00
(Data source: CREST and E.ON UK) Time of day

Perhaps deep-learning method applied to smart-meter
data will provide the answers
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Consumer Characterization

Example of finding base-line for
demand response verification
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Demand Prediction Using

Machine Learning
FFRBL 2 25 2 A7 6 75 SR T

« A good application is the assessment of how flexible different groups of customers will be
under different incentive schemes

* Difficulties are:

— Size and configuration of trials with customer to generate enough meaningful data

— ldentifying the contextual data for demand such as size of household; work-patterns;
household income; caring responsibilities;

— Respect for privacy
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Imperial College Centralised Versus

ik .
SEELRS Decentralised Control
e 5 40 B

. | ' e '.-..-'f
«  With growing number of control points (distributed generators, batteries and demand side actions); central

control faces:
— High data communication volume
— High computational burden
— High-impact failure modes
* The response could be:
— Partition control tasks

— Use more local controllers with autonomy

— _Multi-agent control / energy futures lab
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e i i Decentralised Network Control

Using Multi-Agent Systems
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Imperial College Decentralised Control of Voltage

SRS using Estimation of Sensitivity
FEF RO AL T H s 73 G )
ij j‘%z _G% jgn 1. Voltage drops between neighbouring nodes
/V@\N /VL_oz\ /V@a\‘ /V@\ nodes depends on power flow
s:WWW_ ~ ] RiP; + X;Q;  XiPi + R Q;
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2. Sensitivity of nodal voltage can be estimated
from a sum of such voltage drops.
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Assessment of Accuracy of Local

Control Based on Voltage Sensitivity
S Hh R AR 140 BB D A

. Changes to power injections used by set of local

controllers were compared to injections made by a
centralised “optimal power flow”.

Decentralised control takes almost exactly the same

actions.

Comparison of local control and OPF was repeated
for 500 different combinations of load and
generation one four different networks

Mean error is very low

Processing time is quick (using many simple
contollers)

Total adjustments

04} [Proposed Method
= + *Cenlralized OPF
5 02
b Of—
4
02
04}
0 3 6 a 12 15 b 2 #
Time [h]
= Tmismatch Mean Violation Average Time [S]
Network [p.u] [p.u] (iases
[%] (proposed) (OPF)
Simple10 | 00394 00027 51 00012 00471
5
hLEE&:e‘m 00118 00035 582 00012 0.0436
JEEESS 100313 00004 64 00015 00638
DKGDST6 | 00223 00053 64 00014 00883
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Is used to find the best set of control actions.

Data-Driven Decentralised Control
B X B ) 73 i il
1. An alternative to estimating voltage-sensitivity is to create control functions based on learning

relationships between desired actions and key network measurements.
2. Very many combinations of demand and generation are created and an off-line Optimal Power Flow

3. Regression models are formed of these actions as a function of locally measured voltages and

currents.
_r Fun load Export
mpert = foawro
inad sponaraten VSCs |paramotors —
:I[ lwm“l: Poro Seis ok Post
mut-outout = = PrOCoGSIng
_ Aun OPF ::1&.-: rogrossion | |00t ] | staee
I wih VSCs Export a0t
In the natwork —L and |+ targot
S0t poms
TABLE I 4. Candidates are: linear regression; multi-layer
TRAINING AND VALIDATION RESULTS FOR 4 REGRESSION METHODS. perceptron; random forests and gradient boosted trees.
Model | R? train | MSE train | R2 val | MSE val 5. MLP was found to give the best trade-off between
Cinear | 0.908 0.169 0.673 | 1.04x10~ % accuracy and generalisation
MLP 0.935 0.137 0.757 | 1.04x10—4
RF 0.920 | 446x107° | 0.218 | 1.63x10~ 4
GBT 0916 539x10~° | 0.259 | 1.78x10~4
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Imperial College Application of Data-Driven

L ,
oo Control to Soft-Open Points
AR R P IR SR T3 1 BT

of 18§ 1 =0 o

A Soft-Open point is a pair of power converters forming a AC-DC-AC bridge across a connection in
a network that is normally left open. These have been used in field trials in London and Brighton

Imperial College
London

| a2 9 e
: Energy &Environment
! R| C _ RDO

turbopowersystems

Electrical Machines & Power Electronics

I\ I
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NTpER Culegs Assessment of Data-Driven

Decentralised Control
B IR SN 1R 43 s P A

@50
M1 110 112 113 114

Controllers were trained on a 115-bus network.

Objective was to reduce unbalance between
phases and hence reduce power losses.

1185
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Comparison of Base-Case,

OPF and Data-Driven Control
FEARZEW] . OPF FEHE KB HLik
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« Each nation will face different challenges in reaching 100% renewable energy,
- But the challenges of integration have many common features globally.

« Harnessing large numbers of small local actions will be crucial but posses new challenges in
analysis and control.

- Data science has potential to solve problems on many timescales: planning (years), markets
(hours) and operations (seconds).

* Huge challenges exist in the scale and complexity of control; fresh ideas for decentralised,
autonomous control are needed from computer and data sciences.

» Influencing consumer behaviour to aid supply-demand balancing is a big potential application
of machine learning but will need expertise in psychology and human decision making also.

« Better understanding of asset aging through data analysis is crucial to providing secure
supplies.
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